
1

Application Server Herd: Python and Asyncio
Anthony Khoshrozeh

ABSTRACT
In this paper we look at an alternate architecture for a web

server called an Application Server Herd. The server is

implemented with Python and the asyncio library. This

paper will look at the suitability of implementing such an

application with Python and asyncio, its performance

implications, comparing the intrinsic features of Python and

Java, as well as asyncio and Node.js.

1. INTRODUCTION
Wikipedia and its related sites are based on the Wikimedia

server platform, which is based on GNU/Linux, Apache,

MariaDB, and PHP+JavaScript, using multiple, redundant

web servers behind a load-balancing virtual router and

caching proxy servers for reliability and performance. We

want to build a new Wikimedia-style service designed for

news, where (1) updates to articles will happen far more

often, (2) access will be required via various protocols, not

just HTTP, and (3) clients will tend to be more mobile. In

this new service the PHP+JavaScript application server

looks like it will be a bottleneck. From a software point of

view our application will turn into too much of a pain to

add newer servers (e.g., for access via cell phones, where

the cell phones are frequently broadcasting their GPS

locations). From a systems point of view the response time

looks like it will too slow because the Wikimedia

application server is a central bottleneck.

 To address these problems, we are investigating

the asyncio library in Python and determine if such

would be an effective and practical alternative architecture.

To do so, we are implementing a simple and parallelizable

proxy for the Google Places API.

2. ASYNCIO

2.1 Overview of asyncio
Asyncio is a Python library used to write asynchronous,

concurrent code using the async/await syntax, which is

used as a foundation for multiple Python asynchronous

frameworks that provide high-performance network and

web-servers, database connection libraries, distributed task

queues, etc [1]. Using an asynchronous code allows us to

let other computations to occur while other code is waiting

on something like I/O from the network. To understand the

suitability (pros and cons) of using such library, we’ll go a

few of the key features of the library.

2.2 Coroutines and Tasks
Coroutines are how we write asyncio applications. A

coroutine can be thought of as objects similar to threads but

cannot run in parallel. However, they are run

asynchronously. When a coroutine is called, it is not

scheduled immediately. To execute it we have 3 different

mechanisms. First is calling the asyncio.run() function,

which runs the passed coroutine, taking care of managing

the asyncio event loop, finalizing asynchronous generators,

and closing the threadpool [2]. Second is the using the

await keyword, which makes the coroutine awaitable and

can be awaited from other coroutines. The await keyword

suspends the execution of the current coroutine until the

awaited function is finished. Coroutines can also be

executed by calling the asyncio.create_task()

function to run coroutines concurrently as asyncio

Tasks. Wrapping the coroutine in the Task allows it to be

scheduled to execute when the Task is executed inside an

Event Loop.

2.3 Event Loop
Event Loops are at the core of every asyncio application.

Event Loops run asynchronous tasks and callbacks,

perform network IO operations, and run subprocesses.

They are lower-level code that provide finer control over

event loop behavior (as opposed to using

asyncio.run()). The Event Loop uses cooperative

scheduling and allows us to run tasks that are waiting to be

executed. They can be used instead of using

asyncio.run(). Event Loops also allow us to create

low-level APIs for network I/O, such as calling the

asyncio.start_server() function, which starts a

server that accepts TCP connections.

3. SUITABILITY OF ASYNCIO
3.1 Pros: Asynchronous Code

One of the most important aspects of using asyncio and a

large part of why it makes this library a good choice for

implementing an application server herd is that it allows us

to run our code asynchronously. The application we want to

design needs to be able to handle frequent updates from

clients and other servers in the herd. Asyncio’s key

2

features, coroutines and event loops, allow us to

asynchronously handle these updates without creating a

bottleneck like in Wikipedia’s architecture. Using

synchronous code would create a long queue of tasks to be

run, since the code is executed sequentially, as server

resources become in higher demand as the clients increase.

By allowing other coroutines to run while others that are

waiting for network I/O block, we can minimize task

starvation and greatly increase the efficiency and workload

of our application.

Also by having servers flooding (a coroutine), we can

update our servers without having to go through a central

application server, which creates a bottleneck under heavy

loads.

3.2: Pros: Ease of Writing Applications

Python has an intuitive syntax and is allows programmers

without much or no experience writing Python code to

quickly develop applications. It also has powerful

semantics, allowing developers to write code that might

take 10-15 lines in a language like C or C++ in just a line

or two.

The asyncio library is also well documented and provides

lots of examples on how to use its APIs and libraries, which

greatly speeds up development time. Outside of official

documentation, there are also many examples and tutorials

how to use the asyncio library and almost every other

Python library since it is one of the most popular languages

being used today to develop software. Having a large

developer community around a language is very important

for maintain code bases and fixing bugs.

For these reasons I found writing the proxy herd not to be

very difficult and was able to do so rather quickly

compared to other projects.

3.3 Cons: Inner Workings of Python

While the asyncio library lets us run code concurrently, we

cannot write code that runs parallel, which is a key

difference. This fact doesn’t stem from the library but the

inherent design of Python, which the effects of this will be

discussed in the comparison of Python and Java (see

section 4).

4. PYTHON VS. JAVA

4.1 Type Checking

Python uses dynamic checking which allows to use develop

applications quicker since we don’t to be keep track of our

data types as carefully as in a language such as C++ or

OCaml. However, this often can result in runtime errors

that would have been prevented if we had used a language

that has static type checking. This means in order for us to

increase the reliability of our code, it needs to be

thoroughly tested, and most likely more so than a statically

type checked program. The benefit of this is a simpler

syntax and more flexible code.

Java, however, uses static type checking, so it will catch

errors at compile time rather in runtime like Python. This

can prevent many, possibly disastrous, errors that only

happen in very rare case for which would have remained

undetected for a while if our program used dynamic type

checking. Static type checking also means our code has to

be explicit in our we define our objects and structures and

leads to a more complex syntax. For an application of this

size (only a couple hundred lines of code), using Python is

suitable in this aspect, since it’s small enough to examine

carefully and catch any errors made.

4.2 Memory Management

Python has automatic memory management that uses

reference counting to keep track of the times an object is

being used. When the reference count is zero, the memory

is freed. It is a simple approach and allows programmers

not having to declare when they need memory or are done

with it. This comes at a cost too, since there is some

overhead associated with updating the reference count for

all our objects. Also, if there is a reference cycle in the

program, memory management won’t run garbage

collection on those objects even though they aren’t being

used, which means the program has a memory leak. This

means over time if there are a significant number of leaks,

the server must be restarted.

Java uses a generation-based garbage collection alongside

the mark and sweep algorithm. “The heap is sometimes

divided into two generations called the nursery and the old

space. The nursery is a part of the heap reserved for

allocation of new objects. When the nursery becomes full,

garbage is collected by running a special young collection,

where all objects that have lived long enough in the nursery

are promoted (moved) to the old space, thus freeing up the

nursery for more object allocation. When the old space

becomes full garbage is collected there, a process called an

old collection” [3]. The sentiment behind this approach is

that most objects are short lived so partitioning our

allocated objects gives us a more efficient and effective

method of garbage collection.

Python uses a much more simple approach to its memory

management than Java. This leads to Python having more

memory leaks and also ends up much slower due to its

constant reference counting. So, Java takes the lead over

Python for memory management.

3

4.3 Multithreading

Python does not allow any race conditions to occur due to

its memory management system of reference counting. If

there were race conditions, this would lead to more

memory leaks or releasing memory that is being used.

Python uses a single lock, the GIL, to prevent deadlocks

which would arise from using many locks on different

objects. “The GIL is a single lock on the interpreter itself

which adds a rule that execution of any Python bytecode

requires acquiring the interpreter lock. This prevents

deadlocks (as there is only one lock) and doesn’t introduce

much performance overhead. But it effectively makes any

CPU-bound Python program single-threaded” [4]. This

means Python code runs single-threaded code fast (less

overhead from having multiple locks) and multithreading

doesn’t improve CPU intensive tasks. However, Python is

multithreaded. It just switches between the threads instead

of running them both at the same time.

Java, however, does support multithreading in the sense

that multiple threads can be ran at the same time (in

parallel, unlike Python which runs concurrently; sharing the

CPU). Java was designed to multithread safe, using the

synchronized keyword to prevent race conditions from

occurring. This is a huge benefit, as parallelizable code

offers tremendous performance boost.

So, Java can run multithreaded code much faster than

Python since it is actually parallelizable and Python can

only run concurrently.

5. ASYNCIO VS. NODE.JS
Node.js is “an asynchronous event-driven JavaScript

runtime, …, designed to build scalable network

applications” [5]. It is quite similar to Python’s asyncio in

that Node.js also uses an Event Loop to run asynchronous

code. “The event loop is in the heart of Node.js / Javascript

- it is responsible for scheduling asynchronous operations”

[6]. They also both run code concurrently and not in

parallel. Asyncio uses coroutines and Node.js uses

callbacks to serve essentially the same functionality.

Even though they are quite similar, Python and asyncio are

a more reliable choice than Node.js, even though Node.js

offers a better performance on asynchronous code (Node.js

is based off Chrome’s V8 engine). Also you easily build

your front-end in Javascript which means an easier time

transporting data between the back-end. If your application

needs security more than speed, asyncio is the better

option. If you’re trying build something with where speed

is more important, Node.js will probably be the better

option.

6. CONCLUSION
To conclude, using Python and asyncio to implement the

application herd server is quite a good option with several

benefits to replace the Wikimedia architecture. Even

though it won’t parallelizable, it’ll run concurrently due to

asynchronous code which will greatly reduce the bottleneck

experienced in the previous architecture. Java has some

benefits as explained above, but Python and asyncio has

real notable pros too, such as ease of development. Also,if

we’re creating a herd server with not 5, but several hundred

servers, using asyncio over Node.js is more suitable since it

offers greater reliability. Overall, it is a very suitable

framework to build such an application.

7. REFERENCES
[1] Python3 Asyncio Documentation:

https://docs.python.org/3/library/asyncio.html

[2] Python3 Asyncio Task Documentation:

https://docs.python.org/3/library/asyncio-task.html#running-an-

asyncio-program

[3] Oracle Docs on JMM

https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo

/diagnos/garbage_collect.html

[4] What Is the Python GIL?

 https://realpython.com/python-gil/

[5] https://nodejs.org/en/about/

[6] https://blog.risingstack.com/node-hero-async-programming-

in-node-js/

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-task.html#running-an-asyncio-program
https://docs.python.org/3/library/asyncio-task.html#running-an-asyncio-program
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://realpython.com/python-gil/
https://nodejs.org/en/about/
https://blog.risingstack.com/node-hero-async-programming-in-node-js/
https://blog.risingstack.com/node-hero-async-programming-in-node-js/

	ABSTRACT
	1. INTRODUCTION
	2. ASYNCIO
	2.1 Overview of asyncio
	2.2 Coroutines and Tasks
	2.3 Event Loop

	3. SUITABILITY OF ASYNCIO
	4. PYTHON VS. JAVA
	4.1 Type Checking
	4.2 Memory Management
	4.3 Multithreading

	5. ASYNCIO VS. NODE.JS
	6. CONCLUSION
	7. REFERENCES

